哈希运算[哈希运算是什么意思]
本篇文章给大家谈谈哈希运算,以及哈希运算是什么意思对应的知识点,致力于为用户带来全面可靠的币圈信息,希望对各位有所帮助!
散列方法的主要思想是根据结点的关键码值来确定其存储地址:以关键码值K为自变量,通过一定的函数关系h(K)(称为散列函数),计算出对应的函数值来,把这个值解释为结点的存储地址,将结点存入到此存储单元中。检索时,用同样的方法计算地址,然后到相应的单元里去取要找的结点。通过散列方法可以对结点进行快速检索。散列(hash,也称“哈希”)是一种重要的存储方式,也是一种常见的检索方法。
按散列存储方式构造的存储结构称为散列表(hash table)。散列表中的一个位置称为槽(slot)。散列技术的核心是散列函数(hash function)。 对任意给定的动态查找表DL,如果选定了某个“理想的”散列函数h及相应的散列表HT,则对DL中的每个数据元素X。函数值h(X.key)就是X在散列表HT中的存储位置。插入(或建表)时数据元素X将被安置在该位置上,并且检索X时也到该位置上去查找。由散列函数决定的存储位置称为散列地址。 因此,散列的核心就是:由散列函数决定关键码值(X.key)与散列地址h(X.key)之间的对应关系,通过这种关系来实现组织存储并进行检索。
一般情况下,散列表的存储空间是一个一维数组HT[M],散列地址是数组的下标。设计散列方法的目标,就是设计某个散列函数h,0=h( K ) M;对于关键码值K,得到HT[i] = K。 在一般情况下,散列表的空间必须比结点的集合大,此时虽然浪费了一定的空间,但换取的是检索效率。设散列表的空间大小为M,填入表中的结点数为N,则称为散列表的负载因子(load factor,也有人翻译为“装填因子”)。建立散列表时,若关键码与散列地址是一对一的关系,则在检索时只需根据散列函数对给定值进行某种运算,即可得到待查结点的存储位置。但是,散列函数可能对于不相等的关键码计算出相同的散列地址,我们称该现象为冲突(collision),发生冲突的两个关键码称为该散列函数的同义词。在实际应用中,很少存在不产生冲突的散列函数,我们必须考虑在冲突发生时的处理办法。
在以下的讨论中,我们假设处理的是值为整型的关键码,否则我们总可以建立一种关键码与正整数之间的一一对应关系,从而把该关键码的检索转化为对与其对应的正整数的检索;同时,进一步假定散列函数的值落在0到M-1之间。散列函数的选取原则是:运算尽可能简单;函数的值域必须在散列表的范围内;尽可能使得结点均匀分布,也就是尽量让不同的关键码具有不同的散列函数值。需要考虑各种因素:关键码长度、散列表大小、关键码分布情况、记录的检索频率等等。下面我们介绍几种常用的散列函数。
顾名思义,除余法就是用关键码x除以M(往往取散列表长度),并取余数作为散列地址。除余法几乎是最简单的散列方法,散列函数为: h(x) = x mod M。
使用此方法时,先让关键码key乘上一个常数A (0 A 1),提取乘积的小数部分。然后,再用整数n乘以这个值,对结果向下取整,把它做为散列的地址。散列函数为: hash ( key ) = _LOW( n × ( A × key % 1 ) )。 其中,“A × key % 1”表示取 A × key 小数部分,即: A × key % 1 = A × key – _LOW(A × key), 而_LOW(X)是表示对X取下整
由于整数相除的运行速度通常比相乘要慢,所以有意识地避免使用除余法运算可以提高散列算法的运行时间。平方取中法的具体实现是:先通过求关键码的平方值,从而扩大相近数的差别,然后根据表长度取中间的几位数(往往取二进制的比特位)作为散列函数值。因为一个乘积的中间几位数与乘数的每一数位都相关,所以由此产生的散列地址较为均匀。
假设关键字集合中的每个关键字都是由 s 位数字组成 (u1, u2, …, us),分析关键字集中的全体,并从中提取分布均匀的若干位或它们的组合作为地址。数字分析法是取数据元素关键字中某些取值较均匀的数字位作为哈希地址的方法。即当关键字的位数很多时,可以通过对关键字的各位进行分析,丢掉分布不均匀的位,作为哈希值。它只适合于所上述文章内容就是键字值已知的情况。通过分析分布情况把关键字取值区间转化为一个较小的关键字取值区间。
举个例子:要构造一个数据元素个数n=80,哈希长度m=100的哈希表。不失一般性,我们这里只给出其中8个关键字进行分析,8个关键字如下所示:
K1=61317602 K2=61326875 K3=62739628 K4=61343634
K5=62706815 K6=62774638 K7=61381262 K8=61394220
分析上述8个关键字可知,关键字从左到右的第1、2、3、6位取值比较集中,不宜作为哈希地址,剩余的第4、5、7、8位取值较均匀,可选取其中的两位作为哈希地址。设选取最后两位作为哈希地址,则这8个关键字的哈希地址分别为:2,75,28,34,15,38,62,20。
此法适于:能预先估计出全体关键字的每一位上各种数字出现的频度。
将关键码值看成另一种进制的数再转换成原来进制的数,然后选其中几位作为散列地址。
例Hash(80127429)=(80127429)13=8 137+0 136+1 135+2 134+7 133+4 132+2*131+9=(502432641)10如果取中间三位作为哈希值,得Hash(80127429)=432
为了获得良好的哈希函数,可以将几种方法联合起来使用,比如先变基,再折叠或平方取中等等,只要散列均匀,就可以随意拼凑。
有时关键码所含的位数很多,采用平方取中法计算太复杂,则可将关键码分割成位数相同的几部分(最后一部分的位数可以不同),然后取这几部分的叠加和(舍去进位)作为散列地址,这方法称为折叠法。
分为:
尽管散列函数的目标是使得冲突最少,但实际上冲突是无法避免的。因此,我们必须研究冲突解决策略。冲突解决技术可以分为两类:开散列方法( open hashing,也称为拉链法,separate chaining )和闭散列方法( closed hashing,也称为开地址方法,open addressing )。这两种方法的不同之处在于:开散列法把发生冲突的关键码存储在散列表主表之外,而闭散列法把发生冲突的关键码存储在表中另一个槽内。
(1)拉链法
开散列方法的一种简单形式是把散列表中的每个槽定义为一个链表的表头。散列到一个特定槽的所有记录都放到这个槽的链表中。图9-5说明了一个开散列的散列表,这个表中每一个槽存储一个记录和一个指向链表其余部分的指针。这7个数存储在有11个槽的散列表中,使用的散列函数是h(K) = K mod 11。数的插入顺序是77、7、110、95、14、75和62。有2个值散列到第0个槽,1个值散列到第3个槽,3个值散列到第7个槽,1个值散列到第9个槽。
闭散列方法把所有记录直接存储在散列表中。每个记录关键码key有一个由散列函数计算出来的基位置,即h(key)。如果要插入一个关键码,而另一个记录已经占据了R的基位置(发生碰撞),那么就把R存储在表中的其它地址内,由冲突解决策略确定是哪个地址。
闭散列表解决冲突的基本思想是:当冲突发生时,使用某种方法为关键码K生成一个散列地址序列d0,d1,d2,… di ,…dm-1。其中d0=h(K)称为K的基地址地置( home position );所有di(0 i m)是后继散列地址。当插入K时,若基地址上的结点已被别的数据元素占用,则按上述地址序列依次探查,将找到的第一个开放的空闲位置di作为K的存储位置;若所有后继散列地址都不空闲,说明该闭散列表已满,报告溢出。相应地,检索K时,将按同值的后继地址序列依次查找,检索成功时返回该位置di ;如果沿着探查序列检索时,遇到了开放的空闲地址,则说明表中没有待查的关键码。删除K时,也按同值的后继地址序列依次查找,查找到某个位置di具有该K值,则删除该位置di上的数据元素(删除操作实际上只是对该结点加以删除标记);如果遇到了开放的空闲地址,则说明表中没有待删除的关键码。因此,对于闭散列表来说,构造后继散列地址序列的方法,也就是处理冲突的方法。
形成探查的方法不同,所得到的解决冲突的方法也不同。下面是几种常见的构造方法。
(1)线性探测法
将散列表看成是一个环形表,若在基地址d(即h(K)=d)发生冲突,则依次探查下述地址单元:d+1,d+2,……,M-1,0,1,……,d-1直到找到一个空闲地址或查找到关键码为key的结点为止。当然,若沿着该探查序列检索一遍之后,又回到了地址d,则无论是做插入操作还是做检索操作,都意味着失败。 用于简单线性探查的探查函数是: p(K,i) = i
例9.7 已知一组关键码为(26,36,41,38,44,15,68,12,06,51,25),散列表长度M= 15,用线性探查法解决冲突构造这组关键码的散列表。 因为n=11,利用除余法构造散列函数,选取小于M的最大质数P=13,则散列函数为:h(key) = key。按顺序插入各个结点: 26: h(26) = 0,36: h(36) = 10, 41: h(41) = 2,38: h(38) = 12, 44: h(44) = 5。 插入15时,其散列地址为2,由于2已被关键码为41的元素占用,故需进行探查。按顺序探查法,显然3为开放的空闲地址,故可将其放在3单元。类似地,68和12可分别放在4和13单元中.
(2)二次探查法
二次探查法的基本思想是:生成的后继散列地址不是连续的,而是跳跃式的,以便为后续数据元素留下空间从而减少聚集。二次探查法的探查序列依次为:12,-12,22 ,-22,…等,也就是说,发生冲突时,将同义词来回散列在第一个地址的两端。求下一个开放地址的公式为:
(3)随机探查法
理想的探查函数应当在探查序列中随机地从未访问过的槽中选择下一个位置,即探查序列应当是散列表位置的一个随机排列。但是,我们实际上不能随机地从探查序列中选择一个位置,因为在检索关键码的时候不能建立起同样的探查序列。然而,我们可以做一些类似于伪随机探查( pseudo-random probing )的事情。在伪随机探查中,探查序列中的第i个槽是(h(K) + ri) mod M,其中ri是1到M – 1之间数的“随机”数序列。所有插入和检索都使用相同的“随机”数。探查函数将是 p(K,i) = perm[i – 1], 这里perm是一个长度为M – 1的数组,它包含值从1到M – 1的随机序列。
例子:
例如,已知哈希表长度m=11,哈希函数为:H(key)= key % 11,则H(47)=3,H(26)=4,H(60)=5,假设下一个关键字为69,则H(69)=3,与47冲突。如果用线性探测再散列处理冲突,下一个哈希地址为H1=(3 + 1)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 + 2)% 11 = 5,还是冲突,继续找下一个哈希地址为H3=(3 + 3)% 11 = 6,此时不再冲突,将69填入5号单元,参图8.26 (a)。如果用二次探测再散列处理冲突,下一个哈希地址为H1=(3 + 12)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 – 12)% 11 = 2,此时不再冲突,将69填入2号单元,参图8.26 (b)。如果用伪随机探测再散列处理冲突,且伪随机数序列为:2,5,9,……..,则下一个哈希地址为H1=(3 + 2)% 11 = 5,仍然冲突,再找下一个哈希地址为H2=(3 + 5)% 11 = 8,此时不再冲突,将69填入8号单元,参图8.26 (c)。
(4)双散列探查法
伪随机探查和二次探查都能消除基本聚集——即基地址不同的关键码,其探查序列的某些段重叠在一起——的问题。然而,如果两个关键码散列到同一个基地址,那么采用这两种方法还是得到同样的探查序列,仍然会产生聚集。这是因为伪随机探查和二次探查产生的探查序列只是基地址的函数,而不是原来关键码值的函数。这个问题称为二级聚集( secondary clustering )。
为了避免二级聚集,我们需要使得探查序列是原来关键码值的函数,而不是基位置的函数。双散列探查法利用第二个散列函数作为常数,每次跳过常数项,做线性探查。
哈希运算是一种有点复杂的密码学运算。简单的说,哈稀运算就是哈稀函数的求解题。输入任何一串字符,经过哈希函数都可以得到一串不一样的输出,而比特币记账时要做的哈希运算就是要找到一个初始值X,而这个初始值X经过哈希运算后得到的Y是符合系统要求的。
哈稀函数是单向唯一的,即一个值经过哈希函数运算后得到的结果是一定的,并且每个结果都对应唯一的一个X。所以哈希运算是没有捷径来求解的,只能靠不断地用随机数去试,才能试出正确答案。所以参与记账的人会选择用专业的设备来进行哈希运算以便提高获得记账权的概率。
哈希函数是一个数学方程式,它可用文本(如电子邮件信息)来生成称为信息摘要的代码。著名的哈希函数如:MD4,MD5,SHS。
用于数字鉴别的哈希函数必须有特定的属性,使它在密码使用方面有足够的安全性。尤其是,下面的内容一定不能被发现:
用来哈希出特定值的文本。也就是说,如果你知道信息摘要,你应该不能解出信息的内容。
用来哈希出相同值的两个不同的信息。
如果能够发现用来哈希出特定值的某个信息,攻击者就能够用假信息替代经过签名的真信息。而有些人也能够声称自己实际上签名了哈希出相同值的一个不同的信息,以此虚假地否认这条信息。这样就破坏了数字签名的无法否认的属性。
如果能够发现用来哈希出相同值的两个不同的信息,攻击者就能够给一个信息签名,这个信息和另一个信息都可以哈希出相同值,但二者的意思却是完全不同。
最佳答案 – 由提问者2008-02-11 20:43:12选出
哈希算法将任意长度的二进制值映射为固定长度的较小二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。
参考资料
什么是哈希算法?哈希是一种加密算法,也称为散列函数或杂凑函数。哈希函数是一个公开函数,可以将任意长度的消息M映射成为一个长度较短且长度固定的值H(M),称H(M)为哈希值、散列值(Hash Value)、杂凑值或者消息摘要。它是一种单向密码体制,即一个从明文到密文的不可逆映射,只有加密过程,没有解密过程。
Hash的特点
易压缩:对于任意大小的输入x,Hash值的长度很小,在实际应用中,函数H产生的Hash值其长度是固定的。
易计算:对于任意给定的消息,计算其Hash值比较容易。
单向性:对于给定的Hash值,要找到使得在计算上是不可行的,即求Hash的逆很困难。在给定某个哈希函数H和哈希值H(M)的情况下,得出M在计算上是不可行的。即从哈希输出无法倒推输入的原始数值。这是哈希函数安全性的基础。
抗碰撞性:理想的Hash函数是无碰撞的,但在实际算法的设计中很难做到这一点。
有两种抗碰撞性:一种是弱抗碰撞性,即对于给定的消息,要发现另一个消息,满足在计算上是不可行的;另一种是强抗碰撞性,即对于任意一对不同的消息,使得在计算上也是不可行的。
高灵敏性:这是从比特位角度出发的,指的是1比特位的输入变化会造成1/2的比特位发生变化。消息M的任何改变都会导致哈希值H(M)发生改变。即如果输入有微小不同,哈希运算后的输出一定不同。
哈希算法将任意长度的二进制值映射为固定长度的较小二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的,所以数据的哈希值可以检验数据的完整性。哈希表是根据设定的哈希函数H(key)和处理冲突方法将一组关键字映象到一个有限的地址区间上,并以关键字在地址区间中的象作为记录在表中的存储位置,这种表称为哈希表或散列,所得存储位置称为哈希地址或散列地址。作为线性数据结构与表格和队列等相比,哈希表无疑是查找速度比较快的一种。通过将单向数学函数(有时称为“哈希算法”)应用到任意数量的数据所得到的固定大小的结果。如果输入数据中有变化,则哈希也会发生变化。哈希可用于许多操作,包括身份验证和数字签名。也称为“消息摘要”。 小红和小明可按下面的方式使用哈希函数以确保数据完整性: 如果小红对小明编写一条消息并创建该消息的哈希,则小明可以在稍后散列该消息并将他的哈希与原始哈希进行比较。如果两个哈希值相同,则该消息没有被更改;但是,如果值不相同,则该消息在小红编写它之后已被更改。为了使此系统运行,小红必须对除小明外的所有人保密原始的哈希值。
只要你仔细阅读了上述,那么你就已经了解了哈希运算是什么意思的相关知识,如果屏幕面前的你还有什么对哈希运算好的建议和想法,欢迎各位再下面评论区评论出来,我们将及时回复。
相关内容
相关资讯
-
虚拟币平台钱包(虚拟币 钱包)
虚拟货币钱包APP哪一种比较安全好用鏍规嵁銆婂叧浜庨槻鑼冧唬甯佸彂琛岃瀺璧勯闄╃殑鍏憡銆嬶紝鎴戝浗澧冨唴娌℃湁鎵瑰噯鐨勬暟瀛楄揣甯佷氦鏄撳钩鍙般€傛牴鎹垜鍥界殑鏁板瓧璐у竵鐩戠瑙勫畾锛屾姇璧勮
-
虚拟货币上币的平台 国内正规的虚拟货币交易有哪些
br/>鐏竵鍏ㄧ悆涓撲笟绔欐槸鐏竵闆嗗洟鏃椾笅鏈嶅姟浜庡叏鐞冧笓涓氫氦鏄撶敤鎴风殑鍒涙柊鏁板瓧璧勪骇鍥介檯绔欙紝鑷村姏浜庡彂鐜颁紭璐ㄧ殑鍒涙柊鏁板瓧璧勪骇鎶曡祫鏈轰細锛岀洰鍓嶆彁渚涘洓鍗佸绉嶆暟
-
虚拟币哪个平台好 虚拟币哪个平台好用
目前国内比较好的数字货币交易平台应该属于三巨头,不管从数字货币成交量资金量来讲是从网站的安全性来讲,币安、火币、OKEX这三家大平台交易所都是非常不错的
-
股指期货对冲平仓,股指期货对冲原理
现手最近一笔的成交手数开仓是指开新的多头仓位或者新的空头仓位,也就是新买进或者新卖出一定手数的股指期货合约平仓如果你已经开了多头仓位的话,就需要卖出手上的合约来进行对冲平仓
-
2016年期货双边手续费 2016期货最新手续费
但如果你有认识好的期货客户经理,那你开的户可以只在交易所收取的标准上+0.01元每手,还是黄金,你交的总手续费只需10.01元
-
比特币大牛(比特币大牛市)
在巴比特创始人长铗看来:“中本聪在密码朋克组中是一个年轻后辈(可能30岁出头),但地位十分显赫,在这个密码朋克组中,有菲利普·希默曼(PGP技术的开发者)、约翰·吉尔摩(太阳微系统公司的明星员工)、斯
实时快讯
-
半年前黄金电子货币?电子货币 金属货币
-
半年前鼓励数字货币(数字货币有哪些)
-
半年前辐射货币代码,辐射4动力装甲代码
-
半年前国际汇兑货币,国际汇兑的两种方法
-
半年前黄金储备 基础货币?基础货币和储备货币的区别
-
半年前宏观微观货币,货币的四个职能
-
半年前黄金 货币 关系(黄金货币投资)
-
半年前国际货币基金组织份额(收益好的十大货币基金)