对公信贷融资案例(对公信贷业务基本操作流程)
调研 | 李喆 青川
撰写 | 青川
金融领域是大数据重要的落地场景之一,目前,大数据技术在金融领域应用越来越广泛,具体应用场景包括零售、对公等业务,营销、反欺诈、风险管理等环节,不一而足。
誉存科技便是一家利用大数据技术为对公信贷提供风控工具的公司,成立于2014年底。今年1月,誉存科技获得星河互联、华耀资本数千万A轮融资。
誉存科技主要提供企业信息、反欺诈、风险预警等服务,以标准化SaaS产品提供给金融机构,为对公信贷业务提供工具。除了应用于对公信贷业务,未来其企业数据也可以用于金融机构其他业务类型、政府等其他机构的需求。
信息层面,誉存科技为金融机构提供多重企业信息,包括企业基本信息、股东变更等工商信息,也包括法律诉讼、招聘、招投标等信息,数据来源包括网络爬取的数据、合作机构反馈的数据等。这部分与企查查、启信宝等公司提供的服务会有较大重合。
目前,誉存科技能够覆盖全部具有工商信息的企业,在对企业行为分析后,累计筛选出500万高风险企业。
在此基础上,誉存科技对企业行为信息深度挖掘,包括贷前的反欺诈,通过关联信息勘查企业有没有欺诈的可能性;贷后的监控预警,在企业有高风险事件发生时及时向金融机构预警。
所以誉存科技能应用于对公信贷业务的贷前、贷中以及贷后全业务流程。对金融机构来说,这款工具可以显著提升业务和风控效率,比如之前了解企业信息以及经营情况变化,需要客户经理一家一家全部走访,通过誉存科技的工具,可以筛选出其中高风险企业重点观察,能显著提高客户经理工作效率。
另外,很多关联风险信息客户经理、风控人员靠人工挖掘很难发现,而誉存科技则可以通过数据挖掘将这些信息呈现出来。
由此可见,在金融机构原有业务流程的基础上,誉存科技可提高其业务效率。金融机构对该产品有很大的需求,誉存科技的产品从今年正式推出到现在,已经与几十家银行省分行达成合作。
未来发展上,誉存科技会选出几个行业深耕,做行业内的公司评级、评分,这对数据、建模要求更高,在对公信贷风控上切入的环节更深。
近日,爱分析对誉存科技CEO刘德彬进行了访谈,刘德彬曾任同盾联合创始人兼首席科学家,PayPal资深数据科学家。访谈过程中刘德彬对公司业务、发展战略进行了阐述,现摘取部分访谈内容如下。
当前提供对公信贷辅助风控工具
爱分析:目前誉存科技的客群定位是怎样的?
刘德彬:主要是在信贷行业,包括银行、非银的担保、融资租赁公司等。其中银行也是自下而上的,主要是跟省分行层面的合作。
爱分析:誉存科技提供的是风控系统服务,还是风控相关的辅助工具?
刘德彬:我们是风控相关的辅助工具,以前金融机构没有我们的产品,要靠人工线下调查、资料收集整理,凭经验判断。但现在情况越来越复杂,风险越来越多,我们为金融机构提供情报、线索、预警和指导意见,可以帮他们更好规避风险,所以我们定位是像GPS一样的辅助工具,帮助风控人员。
爱分析:主要提供数据类服务?
刘德彬:是的,传统银行对公业务偏重于企业的财务数据,包括企业的经营数据、纳税数据。但很多时候企业上交银行的材料是经过包装的,客户经理、风控人员还要通过其他材料认证。我们主要关注企业的行为数据,为金融机构提供风险线索。
爱分析:企业行为数据包括哪些维度?
刘德彬:主要是企业的外部行为,从企业地址的变更、股东的变更、业务范围的变化,到被起诉、偷税漏税或者是消防、海关发出的公告都会有。还有关联方的行为,比如企业在运营商那里的变化,之前有100台电脑上网,现在只有10台。
爱分析:誉存科技的产品能用于对公信贷的哪些环节?
刘德彬:贷前、贷中、贷后都有,贷前提供企业背景调查、企业画像、企业风险扫描。贷中帮金融机构把外部数据、非结构化数据处理好,在我们数据的基础上他们再做二次分析。贷后更是一个很大的需求点,很多机构之前重贷前、轻贷后,我们在贷后提供两方面,一个是监控、一个是预警。
贷后方面,银行可能给几百家企业放贷,如果靠几个客户经理贷后走访,很难覆盖。我们会监控企业关联方、上下游、股东、行业政策的变化。在此基础上,我们有智能化预警系统,把其中的风险事件抽取出来。比如某家企业出现变化,历史上发生相同事情的公司基本都会赖账,则提醒银行这家企业需要重点关注。
爱分析:贷前主要是企业反欺诈?
刘德彬:其实很多服务组合的,有企业报告、有反欺诈。
贷前的企业报告和央行征信报告不太一样,我们更关注企业的一些基本信息,比如有没有被人起诉,这跟启信宝、企查查差不多。但是我们还会进一步挖掘,比如我们跟运营商、银联合作拿到企业在运营商的数据、交易数据等。
反欺诈是另一个服务,把企业关联方可能隐藏的负面情况、风险情况一键扫描出来。比如我们一个客户准备放贷给A,然后我们在系统里发现A刚换了老板,这个老板旗下B公司搬家到新的地址,一模一样地址上还有一家C公司,是被法院判罚的老赖。我们能立刻发现这种情况,如果是人工去找则是大海捞针。
爱分析:贷后监控模型的迭代周期是怎样的?
刘德彬:全国公司注册的企业我们都有信息,其中挑出来500万家高风险企业,数据还在不断更新,每天有很多新的违约企业或者新的风险事件入库。数据入库后,模型以最新的数据学习和更新,基本上能做到每天有新的数据进来,每周有更新。
爱分析:企业风险、违约数据来源?
刘德彬:有合作伙伴反馈的,比如银行、担保公司、租赁公司;还有一部分通过爬虫手段在网上爬取的,比如债券违约信息,或者企业欠债信息。
爱分析:未来数据会成为一个壁垒吗?
刘德彬:我觉得未来数据不太会成为壁垒,我们更多的是希望从数据里面挖掘出价值,以报告的形式呈现。数据作为壁垒的价值不大,因为你能找到的数据其他人也能找到,没有谁是完全独有的渠道。
爱分析:如何向金融机构收费?
刘德彬:我们是按照SaaS年费的方式,根据服务范围也有不同。我们是一个大的软件,可以关闭一些监控选项,也可以增加很多节点,根据使用范围收费会有很大的差别。银行的话从十几万到一百万不等,担保、融资租赁等非银信贷机构一般在5万到50万之间。
爱分析:银行使用誉存科技的工具后,哪些指标会有明显变化?
刘德彬:主要是效率,特别是在贷后很明显。两三个人贷后就可以管理几百家企业,能够做到有针对性去调查,效率提升很明显。
爱分析:如何获客?
刘德彬:现在有几十家银行客户,获客分两部分,一部分是自己团队通过BD获客;另一部分是与合作伙伴联合销售,现在主要是中金支付、中国电信。
未来会深耕垂直行业
爱分析:目前是工具类产品,未来产品线上有何规划?
刘德彬:工具还是要继续做好,另外我们会在贷前环节再前进一步。现在我们只是初筛,发现哪些企业有很大风险,再往下我们会选一些垂直行业,要给企业做量化评级、排名。
爱分析:垂直行业量化产品类似于FICO分?
刘德彬:类似但是不一样,fico评分是通用的个人评分,能大致反映人的信用状况。但对企业来说,由于地区、行业、规模、业务的不一样,很难用一套分数或者模型衡量,比如不能拿重庆的一个酒店和北京的一个餐馆、上海的一个医院一起比较。
所以我们会在现在比较通用的产品基础上,在一些垂直行业深挖下去,根据行业和场景,增加额外的数据来做模型。
爱分析:如何选择垂直行业?
刘德彬:会按照银行的放款量去选择行业,以及我们的合作伙伴的需求。
爱分析:跟银联、运营商是怎样的合作形式?
刘德彬:我们跟中国电信、银联下面的子公司中金支付合作,他们先是我们的客户,再是我们的战略合作伙伴。我们之间有很多研究上的合作和数据上的合作,然后共同去做品牌、市场、销售。
爱分析:誉存目前团队规模多大?
刘德彬:现在全公司120人,研发团队近70人,BD团队约30人,其他还有市场、品牌等人员。
相关内容
相关资讯
-
虚拟币平台钱包(虚拟币 钱包)
虚拟货币钱包APP哪一种比较安全好用鏍规嵁銆婂叧浜庨槻鑼冧唬甯佸彂琛岃瀺璧勯闄╃殑鍏憡銆嬶紝鎴戝浗澧冨唴娌℃湁鎵瑰噯鐨勬暟瀛楄揣甯佷氦鏄撳钩鍙般€傛牴鎹垜鍥界殑鏁板瓧璐у竵鐩戠瑙勫畾锛屾姇璧勮
-
虚拟货币上币的平台 国内正规的虚拟货币交易有哪些
br/>鐏竵鍏ㄧ悆涓撲笟绔欐槸鐏竵闆嗗洟鏃椾笅鏈嶅姟浜庡叏鐞冧笓涓氫氦鏄撶敤鎴风殑鍒涙柊鏁板瓧璧勪骇鍥介檯绔欙紝鑷村姏浜庡彂鐜颁紭璐ㄧ殑鍒涙柊鏁板瓧璧勪骇鎶曡祫鏈轰細锛岀洰鍓嶆彁渚涘洓鍗佸绉嶆暟
-
虚拟币哪个平台好 虚拟币哪个平台好用
目前国内比较好的数字货币交易平台应该属于三巨头,不管从数字货币成交量资金量来讲是从网站的安全性来讲,币安、火币、OKEX这三家大平台交易所都是非常不错的
-
股指期货对冲平仓,股指期货对冲原理
现手最近一笔的成交手数开仓是指开新的多头仓位或者新的空头仓位,也就是新买进或者新卖出一定手数的股指期货合约平仓如果你已经开了多头仓位的话,就需要卖出手上的合约来进行对冲平仓
-
2016年期货双边手续费 2016期货最新手续费
但如果你有认识好的期货客户经理,那你开的户可以只在交易所收取的标准上+0.01元每手,还是黄金,你交的总手续费只需10.01元
-
比特币大牛(比特币大牛市)
在巴比特创始人长铗看来:“中本聪在密码朋克组中是一个年轻后辈(可能30岁出头),但地位十分显赫,在这个密码朋克组中,有菲利普·希默曼(PGP技术的开发者)、约翰·吉尔摩(太阳微系统公司的明星员工)、斯
实时快讯
-
半年前黄金电子货币?电子货币 金属货币
-
半年前鼓励数字货币(数字货币有哪些)
-
半年前辐射货币代码,辐射4动力装甲代码
-
半年前国际汇兑货币,国际汇兑的两种方法
-
半年前黄金储备 基础货币?基础货币和储备货币的区别
-
半年前宏观微观货币,货币的四个职能
-
半年前黄金 货币 关系(黄金货币投资)
-
半年前国际货币基金组织份额(收益好的十大货币基金)