比特1(比特与信息在计算机中的表示及补码和浮点数的IEEE 754标准)

币圈资讯 阅读 3 2023-04-21 12:35:57

Bitget下载

注册下载Bitget下载,邀请好友,即有机会赢取 3,000 USDT

APP下载   官网注册

1 什么是比特?

比特(bit,binary digit的缩写)中文翻译为“二进位数字”、“二进位” 或简称为 “位”。

比特只有 2 种取值:0和1,一般无大小之分。

如同DNA是人体组织的最小单位、原子是物质的最小组成单位一样,比特是组成数字信息的最小单位。

数值、文字、符号、图像、声音、命令······都可以使用比特来表示。

2 比特的三种基本逻辑运算

比特的取值“0”和“1” 可表示两种不同的状态(例如电位的高/低、开关的断开/接通)。

比特的运算使用逻辑代数,它有3种基本逻辑运算:

逻辑加(也称“或”运算,用符号“OR”、“∨”或“+”表示)。

逻辑乘(也称“与”运算,用符号“AND”、 “∧”或“ · ”表示,也可省略)。

取反(也称“非”运算,用符号“NOT”或上横杠“¯”表示)。

两个多位的二进制信息进行逻辑运算时,按位独立进行,即每一位都不受其它位的影响:

例1

A:0110 ∨B:1010F: 1110

例2

A: 0110∧B: 1010F: 0010

3 比特在计算机中如何表示?

表示一个比特需要使用两个状态:

电路的高电平状态或低电平状态(CPU)

电容的充电状态或放电状态(RAM)

两种不同的磁化状态(磁盘)

光盘面上的凹凸状态(光盘)

···

4 比特的存储

存储(记忆)1个比特需要使用具有两种稳定状态的元器件,例如:开关、灯泡等。

4.1 比特在CPU中的存储

在计算机的CPU中,比特使用一种称为“触发器”的双稳态电路来存储。

触发器有两个状态,可分别用来记忆0和1,1个触发器可存储1个比特。

一组(例如8个或16个)触发器可以存储1组比特,称为“寄存器”。

CPU中有几十个甚至上百个寄存器。

断电后信息不再保持、为易失性存储器!

4.2 比特在内存中的存储

计算机存储器中用电容器存储二进位信息:当电容的两极被加上电压,它就被充电,电压去掉后,充电状态仍可保持一段时间,因而1个电容可用来存储1个比特。

电容C处于充电状态时,表示1

电容C处于放电状态时,表示0

集成电路技术可以在半导体芯片上制作出以亿计的微型电容器,从而构成了可存储大量二进位信息的半导体存储器芯片。

断电后信息不再保持!

4.3 比特在外存储器中的存储

磁盘:利用磁介质表面区域的磁化状态来存储二进位信息。

光盘:只读光盘通过“刻”在光盘片表面上的微小凹坑来记录二进位信息。

断电后信息可以保持、为非易失性存储器!

5 存储容量的计量单位

8个比特=1个字节(byte,用大写B表示)

计算机内存储器容量的计量单位:

KB: 1 KB=2^10字节=1024 B (千字节)MB: 1 MB=2^20字节=1024 KB(兆字节)GB: 1 GB=2^30字节=1024 MB(吉字节、千兆字节)TB: 1 TB=2^40字节=1024 GB(太字节、兆兆字节)

外存储器容量经常使用10的幂次来计算:

1MB=10^3 KB =1 000 KB1GB=10^6 KB =1 000 000 KB1TB= 10^9 KB = 1 000 000 000 KB

不同进位制前缀的使用场合:

内存、cache、半导体存储器芯片的容量均使用二进制前缀:

512MB的内存条( 1M=2^20 )

256KB 的cache(1K= 2^10 )

文件和文件夹的大小使用二进制前缀。

频率、传输速率等使用十进制前缀:

主频 1GHz(1G=10^9)

传输速率 100Mbps(1M=10有^6)

外存储器(硬盘、DVD光盘、U盘、存储卡等)容量:

厂商标注的容量使用十进制前缀。

操作系统显示的容量使用二进制前缀。

6 比特的传输

信息是可以传输的,信息只有通过传输和交流才能发挥它的作用。

在数字通信技术中,信息的传输是通过比特的传输来实现的。

近距离传输时:直接将用于表示“0/1”的电信号或光信号进行传输(称为基带传输),例如:

计算机读出或者写入移动硬盘中的文件。

使用打印机打印某个文档的内容。

远距离传输或者无线传输时:需要使用调制技术。

比特的传输速率:

传输速率表示每秒钟可传输的二进位数目,常用单位是:

比特/秒(b/s),也称“bps”。如 2400 bps(2400b/s)千比特/秒(kb/s),1kb/s=103比特/秒=1 000 b/s兆比特/秒(Mb/s),1Mb/s=106比特/秒=1 000 kb/s吉比特/秒(Gb/s),1Gb/s=109比特/秒=1 000 Mb/s太比特/秒(Tb/s),1Tb/s=1012比特/秒=1 000 Gb/s

8 不同进位制数的表示和含义

“数”是一种信息,它有大小(数值),可以进行四则运算。

“数”有不同的表示方法。日常生活中人们使用的是十进制数,但计算机使用的是二进制数,程序员还使用八进制和十六进制数,它们怎样表示?其数值如何计算?

8.1 十进制数

每一位可使用十个不同数字表示(0、1、2、3、4、5、6、7、8、9)。

低位与高位的关系是:逢10进1。

各位的权值是10的整数次幂(基数是10 )。

标志: 尾部加“D”或缺省。

例:

204.96=2×10^2+0×10^1+4×10^0+9×10^-1+6×10^-2

8.2 二进制数

每一位使用两个不同数字表示(0、1),即每一位使用 1 个“比特”表示。

低位与高位的关系是:逢2进1。

各位的权值是 2 的整数次幂(基数是2 )。

标志: 尾部加B

例:

101.01 B =1×2^2+0×2^1+1×2^0 +0×2^-1+1×2^-2 =5.25

8.3 十六进制数

用十六进制数来表示二进制数,相当于二进制数来说,更直观,因为4个二进制位可以用1个十六进制位来表示,因为二进制的1111等于十进制的15,也就是十六进制的F。十进制与二进制的位数对位没有十六进制方便,一位十进制相当于约3.2位二进制。

每一位使用十六个数字和符号表示(0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F )。

逢16进1, 基数为16。

各位的权值是16的整数次幂(基数是16 )。

标志:尾部加H。

例:

F5.4H=15×16^1 + 5×16^0 + 4×16^-1 = 245.25

8.4 八进制数

一位八进制数可以表示三位二进制数,因为二进制的111也就是八进制的7。

每一位使用八个不同数字表示(0、1、2、3、4、5、6、7)。

低位与高位的关系是:逢8进1。

各位的权值是8的整数次幂(基数是8 )。

标志:尾部加Q。

例:

365.2Q = 3×8^2+ 6×8^1+ 5×8^0 + 2×8^-1 = 245.25

9 不同进制数的相互转换

熟练掌握不同进制数相互之间的转换,在编写程序和设计数字逻辑电路时很有用。

只要学会二进制数与十进制数之间的转换,与八进制、十六进制数的转换就不在话下了。

9.1 十进制数→二进制数

转换方法:

整数和小数分开转换。

整数部分:除以2逆序取余

小数部分:乘以2顺序取整

例如:29.6875→ 11101.1011 B

注意:十进制小数(如0.63)在转换时会出现二进制无穷小数,这时只能取近似值。

比特与信息在计算机中的表示及补码和浮点数的IEEE 754标准

9.2 二进制数→十进制数

转换方法:

二进制数的每一位乘以其相应的权值,然后累加即可得到它的十进制数值。

例: 11101.1011B

= 1×2^4+1×2^3+1×2^2+0×2^1+1×2^0

+1×2^-1+0×2^-2+1×2^-3+1×2^-4

= 29.6875

9.3 八进制数与二进制数的互换

八进制→二进制:把每个八进制数字改写成等值的3位二进制数,且保持高低位的次序不变。

例: 2467.32Q → 010 100 110 111 . 011 010 B

二进制→八进制:整数部分从低位向高位每3位用一个等值的八进制数来替换,不足3位时在高位补0凑满3位;小数部分从高位向低位每3位用一个等值八进制数来替换,不足3位时在低位补0凑满三位。

例: 1 101 001 110.110 01 B → 001 101 001 110.110 010 B

→ 1516.62 Q

9.4 十六进制数与二进制数的互换

转换方法:与八、二进制互换的方法类似。

例1:35A2.CFH → 11 0101 1010 0010.1100 1111B

例2:11 0100 1110.1100 11B → 34E.CCH

10 PC机中数的主要类型

都采用二进制表示,有不同类型和不同长度。

不同类型和不同长度的数各有不同的用途。

10.1 无符号整数的表示

比特与信息在计算机中的表示及补码和浮点数的IEEE 754标准

10.2 有符号整数的表示

比特与信息在计算机中的表示及补码和浮点数的IEEE 754标准

负数的绝对值如何用补码表示?

先表示为自然码。

将自然码的每一位取反码。

在最低位加“1”。

比特与信息在计算机中的表示及补码和浮点数的IEEE 754标准

如4个位的补码方案可以表示的数据范围:

比特与信息在计算机中的表示及补码和浮点数的IEEE 754标准

10.3 原码和补码的优缺点分析

原码表示法:

优点:与日常使用的十进制表示方法一致,简单直观。

缺点:加法与减法运算规则不统一,增加了成本;整数0 有“00000000”和“10000000”两种表示形式,不方便。

补码表示法:

优点:加法与减法运算规则统一, 没有“-0”,可表示的数比原码多一个(-2n-1)。

缺点:不直观,人使用不方便。

10.4 原码和补码可表示的整数范围

原码可表示的整数范围:

8位原码: - 27+1~27- 1(- 127~127)

16位原码: - 215+1~215- 1(- 32767~32767)

n 位原码: - 2n-1+1~2n-1- 1

补码可表示的整数范围:

8位补码:- 27~27- 1 (- 128~127 )

n位补码:- 2n-1~2n-1- 1

- 128表示为 10000000

+127 表示为 01111111

10.5 整数在计算机中的表示的对比

计算机中整数有多种,同一个二进制代码表示不同类型的整数时,其含义(数值)可能不同。

一个代码它到底代表哪种整数(或其它东西),是由指令决定的。

比特与信息在计算机中的表示及补码和浮点数的IEEE 754标准

10.6 实数的特点与表示方法

实数是既有整数部分又有小数部分,小数点位置不固定。

任何一个实数总可以表达成一个乘幂和一个纯小数之积。

例如:

56.725 = 0.56725×10^2

-0.0034756 = -0.34756×10^-2

实数的表示方法(记阶法/浮点表示法):用3个部分表示:

乘幂中的指数(也称阶码):表示实数中小数点的位置。

纯小数部分(尾数):表示实数中的有效数字部分。

数的正负(符号)。

二进制实数的浮点表示:

与十进制实数一样,二进制实数也可以用记阶法表示,如:

+1001.011B = + 0.1001011B×2^ 100

-0.0010101B = -0.10101B×2^-10

可见,任一个二进制实数 N 均可表示为:

N=±S×2P

(其中, ±是该数的符号; S是N 的尾数;P是N的阶码)

因此,32位的单精度浮点数在计算机中可表示为:

由于指数(阶码)可以选用不同的编码(原码、补码等),尾数的格式和小数点位置也可以有不同的规定,因此早期计算机中浮点数的表示方法互不相同。

现代计算机中,一般都以IEEE 754标准存储浮点数,这个标准的在内存中存储的形式为:

对于不同长度的浮点数,阶码与小数位分配的数量不一样,如对于32位的单精度浮点数,数符分配是1位,阶码分配了8位,尾数分配了是23位:

比特与信息在计算机中的表示及补码和浮点数的IEEE 754标准

符号位:0表示正;1表示负;

偏移阶码e:e=指数的实际值+127。

假有一个浮点数10110010.001,则指数是7,阶码就要用7+127的二进制数表示,也就是:111+01111111 = 10000110

尾数使用原码表示,绝对值在1与2之间,其中1和小数点都是隐含的,并不直接表示。

比特与信息在计算机中的表示及补码和浮点数的IEEE 754标准

根据这个标准,我们来尝试把一个十进制的浮点数转换为IEEE754标准表示。

例如:178.125

先把浮点数分别把整数部分和小数部分转换成2进制:

整数部分用除2取余的方法,求得:10110010

小数部分用乘2取整的方法,求得:001

合起来即是:10110010.001

转换成二进制的浮点数,即把小数点移动到整数位只有1,即为:1.0110010001 * 2^111,111是二进制,由于左移了7位,所以是111

把浮点数转换二进制后,这里基本已经可以得出对应3部分的值了:

数符:由于浮点数是正数,故为0(负数为1)。

阶码 : 阶码的计算公式:阶数 + 偏移量, 阶码是需要作移码运算,在转换出来的二进制数里,阶数是111(十进制为7),对于单精度的浮点数,偏移值为01111111(127)[偏移量的计算是:2^(e-1)-1, e为阶码的位数,即为8,因此偏移值是127],即:111+01111111 = 10000110

尾数:小数点后面的数,即0110010001

最终根据位置填到对位的位置上:

比特与信息在计算机中的表示及补码和浮点数的IEEE 754标准

可能有个疑问:小数点前面的1去哪里了?由于尾数部分是规格化表示的,最高位总是“1”,所以这是直接隐藏掉,同时也节省了1个位出来存储小数,提高精度。

浮点数的二进制显示可以使用以下代码:

#include<iostream>#include <bitset> //STL的bitset模板类using namespace std;void main(){ union {  float input;  int output; } data; data.input = 178.125; std::bitset<sizeof(float) * 8>bits2(data.output); //bitset模板类定义对象,<>内为长度,()为值 //如bitset<8> bitset2(12); //长度为8,二进制保存,前面用0补充 std::cout << bits2 << std::endl; system("pause");}//01000011001100100010000000000000

-End-

相关内容

标签: 表示 二进制 使用

比特1(比特与信息在计算机中的表示及补码和浮点数的IEEE 754标准)文档下载: PDF DOC TXT
文章来源: 小月
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至举报,一经查实,本站将立刻删除。
上一篇: wbfex交易所下载(不要把脏水和孩子一起泼掉,深圳约谈涉币企业) 下一篇: 北京环境交易所(北京将建面向全球的国家级绿色交易所)

相关资讯

  • 虚拟货币怎么挖的到的
    虚拟货币怎么挖的到的

    图为比特币疯牛矿机图为显卡矿机在运营门槛上,比特币矿机和显卡矿机有非常高的要求:首要条件:充沛且廉价的电力矿机需7X24小时计算,发热量高,功耗大,矿机普遍额定功率在1000-2000W,布置100台

    币圈资讯 2023-05-15 45
  • 举报虚拟货币有钱拿吗
    举报虚拟货币有钱拿吗

    齐鲁网·闪电新闻2月25日讯 近日,记者从山东省发展改革委获悉,为贯彻落实《国家发展改革委等部门关于整治虚拟货币“挖矿”活动的通知》、国家发展改革委令2021年第49号要求,加速促进产业结构优化,推动

    币圈资讯 2023-05-15 35
  • 虚拟货币火狐狸
    虚拟货币火狐狸

    动物森友会》本地化工作做得相当优秀,不过作为一款日本人制作的游戏,仍免不了有外国人难以理解的文化内容,就像本文中提到的狸猫文化

    币圈资讯 2023-05-15 28
  • 虚拟币跑分(认清“USDT跑分”骗局,远离洗钱活动)
    虚拟币跑分(认清“USDT跑分”骗局,远离洗钱活动)

    通过仔细询问,我发现这个所谓的USDT跑分平台果然是一种新型骗局,并且所有参与到里边的人很有可能都涉嫌了协助洗钱犯罪

    币圈资讯 2023-04-18 23
  • 虚拟货币洗钱概念
    虚拟货币洗钱概念

    四、明知涉案资金是诈骗犯罪所得,仍提供银行卡账户供收款、转账,并通过购买加密数字货币等方式协助资金转移,同时构成洗钱罪、掩饰隐瞒犯罪所得罪参考案例:胡某某、李某某等被控洗钱罪、掩饰、隐瞒犯罪所得、犯罪

    币圈资讯 2023-05-15 22
  • 2005年比特币多少钱一枚(2006年比特币一个多少人民币)
    2005年比特币多少钱一枚(2006年比特币一个多少人民币)

    比特币的概念最开始是在2009年是由一个叫中本聪的人士提出的,比特币是一种P2P形式的数字货币,在比特币概念刚被提出的时候,比特币是没有价格的,直到第一次交易发生,比特币才产生了价值,比特币最开始的时

    币圈资讯 2023-05-15 21
  • 如何玩转虚拟货币视频
    如何玩转虚拟货币视频

    通常 Web 应用的交互模式是由客户端向服务端发送 HTTP 请求, 服务端根据客户端的的请求返回相应的数据, 在这样的交互模式下, 通信双方并不是对等的, 因为所有的请求都是由客户端主动发起, 对于

    币圈资讯 2023-05-15 21
  • 虚拟货币去向
    虚拟货币去向

    赵长鹏是世界最大的数字货币交易所的CEO,本身持有大量的比特币,所以被人叫做世界首富,币圈叫它“CZ”

    币圈资讯 2023-05-15 19